

KALTARBEITSSTAHL
COLD WORK TOOL STEEL

Qualitativer Vergleich der wichtigsten Eigenschaftsmerkmale

Qualitative comparison of the major steel properties

Marke / Grade BÖHLER	Verschleißwiderstand abrasiv	Verschleißwiderstand adhäsiv	Zähigkeit	Druckbelastbarkeit	Maßbeständigkeit bei der Wärmebehandlung
	Wear resistance abrasive	Wear resistance adhesive	Toughness	Compressive strength	Dimensional stability during heat treatmen
BÖHLER K100	***	**	*	**	**
BÖHLER K105	**	**	*	**	**
BÖHLER K107	***	**	*	**	**
BÖHLER K110	***	**	*	**	**
BÖHLER K245	*	*	****	*	*
BÖHLER K305	*	*	****	*	*
BÖHLER K306	*	*	****	*	*
BÖHLER K329	**	*	****	*	*
BÖHLER K340	***	****	***	****	***
BÖHLER K353	***	***	****	**	**
BÖHLER K360	***	****	**	****	***
BÖHLER K390 DIERDELEFID	****	****	***	****	***
BÖHLER K455	*	*	****	*	*
BÖHLER K460	*	*	****	*	*
BÖHLER K600	*	*	****	*	*
BÖHLER K605	*	*	****	*	*
BÖHLER K720	*	*	****	*	*
BÖHLER K890	***	***	****	****	****

Die Tabelle soll einen Anhalt für die Auswahl von Stählen bieten. Sie kann jedoch die unterschiedlichen Beanspruchungsverhältnisse für verschiedene Einsatzgebiete nicht berücksichtigen.

Vergleichsbewertung ist stark abhängig von der Wärmebehandlung.

Unser technischer Beratungsdienst steht Ihnen für alle Fragen der Stahlverwendung und -verarbeitung jederzeit zur Verfügung.

This table is intended to facilitate the steel choice.

Therefore it is not comparable with the hardenable steels in this form.

It does not, however, take into account the various stress conditions imposed by the different types of application.

Austenitic manganese steel maintaining its characteristic properties by work hardening under impact and compressive stresses.

Comparison is strongly dependent on the heat treatment conditions.

Our technical consultancy staff will be glad to assist you in any questions concerning the use and processing of steels.

Eigenschaften

Standardmarke der maßänderungsarmen, ledeburitischen 12%-igen Chromstähle.

Verwendung

Schneid- und Stanzwerkzeuge:

Vorwiegend Stempel für Hochleistungsschnitte und sehr komplizierte Folge- und Gesamtschnitte, vor allem für die Elektroindustrie, Beschlagteileerzeugung, Konservendosen- u. Kartonagenindustrie, Uhrenindustrie, Sägezahnschnitte, auch Schabeund Repassierwerkzeuge für größte Stückzahlen, hochbeanspruchte Stempel für alle Arten von Stanzwerkzeugen, Schermesser hoher Schnittleistung zum Schneiden von Blechen bis etwa 4 mm Dicke, Abgratwerkzeuge, Messer für Drahtstifte-Erzeugung usw.

Spanabhebende Werkzeuge:

Räumnadeln, Messer für die Stahlwollefertigung, hochbeanspruchte Holzbearbeitungswerkzeuge.

Werkzeuge zur spanlosen Formgebung:

Gewindewalzbacken und -rollen, Bördel- und Sickenrollen, Stempel und Matrizen für die Kaltmutter-Fertigung, Drück- und Preßwerkzeuge, Tiefziehwerkzeuge, Fließpreßwerkzeuge zum Verarbeiten von Leichtmetallegierungen und Stahl, Einsenkpfaffen für die Herstellung von Kunststofformen, Rändelwerkzeuge, Zieheisen für Drahtzug, Ziehmatrizen und Ziehstopfen für Rohr- und Stangenzug, Dorne zum Kaltpilgern von Stahlrohren, Hämmer zur Nadelherstellung (Nadelreduzierbacken).

Properties

Standard grade of dimensionally stable ledeburitic, high carbon, high chromium (12%) tool steels.

Application

Blanking, punching, shearing:

Punches for high duty and complicated progressive and integral cutting dies, mainly for industries making electrical equipment, fittings, cardboard, preserve cans, and watches; saw teeth cutting dies, scraping and trimming tools for maximum production runs, highly stressed for all types of cutting tools, high performance shear blades for cutting sheet of up to 4 mm thickness, deburring tools, and cutters for wire nail manufacture.

Machining:

Broaches, cutters for steel wool production, high duty woodworking tools.

Shaping:

Thread rolling dies, flanging and beading dies, punches and dies for cold nut manufacture; tools for spinning, pressing, deep drawing, and cold extrusion of light alloys and steel; master hobs for making plastic moulds, knurling tools, wire drawing dies, mandrels and dies for tube and rod drawing, mandrels for the cold pilger rolling of steel tubes, hammers and reducing dies for needle manufacture

Verschleißfeste Werkzeuge und Bauteile:

Preßwerkzeuge zum Verarbeiten stark verschleißender keramischer Stoffe, Formplatten für die Ziegelindustrie und zur Fertigung für feuerfester Steine, Preßwerkzeuge für die pharmazeutische Industrie, Führungsbüchsen für Automaten, Führungseinsätze für spitzenlose Schleifmaschinen, Stufenscheiben und Ringe für Drahtziehmaschinen, Sandstrahldüsen, Werkzeuge für die Sinterindustrie.

Wear resisting tools and components:

Press tools for the processing of highly abrasive ceramic materials, liner plates for the brick industry and for making refractories, press tools for the pharmaceutical industry, automatic lathe guide sleeves, guide bars in centerless grinding machines, cone pulleys and rings for wire drawing machines, sandblast nozzles, and tools for the powder metal industry.

Meßzeuge

Warmarbeitswerkzeuge:

Hochbeanspruchte Hammerkerne für die Sensenund Sichelerzeugung sowie für Schnellschlaghämmer zum Ausschmieden harter oder hochlegierter Stähle, ferner für Fertigwalzköpfe bei Ringwalzen, Warmziehringe u. dgl.

Measuring tools

Hot work tools:

High duty hammer cores for the manufacture of scythes and sickles, and for fast hitting hammers used to forge hard or high alloy steels; tyre mill finishing rolls, hot drawing rings etc.

Chemische Zusamme	nsetzung (Anhaltswert	e in %) / Chemical com	position (average %)
С	Si	Mn	Cr
2,00	0,25	0,35	11,50

Normen		Standards		
EN / DIN	AISI	JIS	GOST	
< 1.2080> X210Cr12	~ D3	~ SKD1	~ Ch12	

Warmformgebung

Schmieden:

1050 bis 850°C

Langsame Abkühlung im Ofen oder in wärmeisolierendem Material.

Wärmebehandlung

Weichglühen:

800 bis 850°C

Geregelte langsame Ofenabkühlung mit 10 bis 20° C/h bis ca. 600° C,

weitere Abkühlung in Luft.

Härte nach dem Weichglühen:

max. 248 HB.

Spannungsarmglühen:

ca. 650°C

Langsame Ofenabkühlung. Zum Spannungsabbau nach umfangreicher Zerspanung oder bei komplizierten Werkzeugen. Haltedauer nach vollständiger Durchwärmung 1-2 Stunden in neutraler Atmosphäre.

Härten:

940 bis 970°C

Öl, Warmbad (220 bis 250°C oder 500 bis 550°C), Druckluft- oder Lufthärtung bis max. 25 mm Dicke bei Härtetemperaturen an der oberen Grenze möglich, Gas

Haltedauer nach vollständigem Durchwärmen: 15 bis 30 Minuten.

Erzielbare Härte: 57 - 62 HRC.

Anlassen:

Langsames Erwärmen auf Anlasstemperatur unmittelbar nach dem Härten/Verweildauer im Ofen 1 Stunde je 20 mm Werkstückdicke, jedoch mindestens 2 Stunden/Luftabkühlung.

Richtwerte für die erreichbare Härte nach dem Anlassen bitten wir dem Anlassschaubild zu entnehmen.

In bestimmten Fällen ist es zweckmäßig mit abgesenkter Anlasstemperatur und verlängerter Haltedauer vorzugehen.

Hot forming

Forging:

1050 to 850°C

Slow cooling in furnace or thermoinsulating material.

Heat treatment

Annealing:

800 to 850°C

Slow controlled cooling in furnace at a rate of 10 to 20°C/hr down to approx. 600°C,

further cooling in air.

Hardness after annealing:

max. 248 HB.

Stress relieving:

approx. 650°C

Slow cooling in furnace; intended to relieve stresses set up by extensive machining, or in complex shapes.

After through heating, hold in neutral atmosphere for 1-2 hours.

Hardening:

940 to 970°C

Oil, salt bath (220 to 250°C or 500 to 550°C), compressed or still air if thickness does not exceed 25 mm and if hardening temperature is on the upper side of the range, gas

Holding time after temperature equalization:

15 to 30 minutes.

Obtainable hardness: 57 - 62 HRC.

Tempering:

Slow heating to tempering temperature immediately after hardening/time in furnace 1 hour for each 20 mm of workpiece thickness but at least 2 hours/cooling in air.

For average hardness figures to be obtained please refer to the tempering chart.

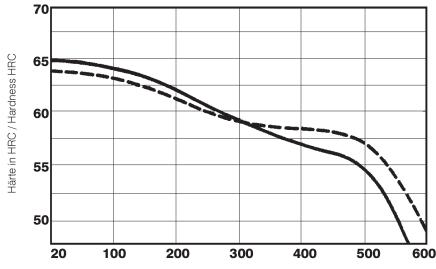
For certain cases we recommend to reduce tempering temperature and increase holding time.

Anlassschaubild:

Härtetemperatur: 950°C

----- 1000°C

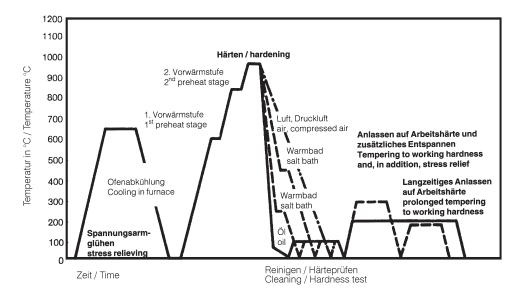
Probenquerschnitt: Vkt. 20 mm


Tempering chart:

Hardening temperature:

—— 950°C

---- 1000°C


Specimen size: square 20 mm

Anlasstemperatur in °C / Tempering temperature, °C

Wärmebehandlungsschema

Heat treatment sequence

Reparaturschweißen

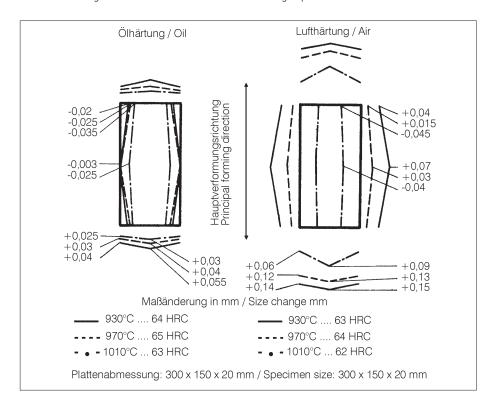
Die Gefahr von Rissen bei Schweißarbeiten ist, wie allgemein bei Werkzeugstählen, vorhanden. Sollte ein Schweißen unbedingt erforderlich sein, bitten wir Sie, die Richtlinien Ihres Schweißzusatzwerkstoffherstellers zu beachten.

Repair welding

There is a general tendency for tool steels to develop cracks after welding. If welding cannot be avoided, the instructions of the appropriate welding electrode manufacturer should be sought and followed.

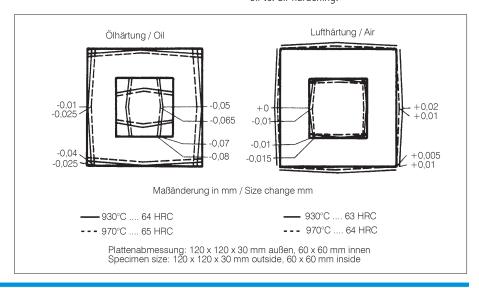
Maßänderung

Die Maßänderung beim Härten hängt von der Lage der Werkzeuge in bezug auf die Hauptverformungsrichtung (liegende oder stehende Faser), von den Abmessungen und der Form sowie der Härtetemperatur und dem Härtemittel ab.


Maßänderung von Platten mit liegender Faser bei Öl- und Lufthärtung.

Plattenabmessung: 300 x 150 x 20 mm.

Size change


In hardening, size change depends on the direction of grain flow in tools and dies (longitudinal, i.e. in the main direction of rolling, or transverse), on dimensions, shape, quenching, temperature, and quenchant.

Size change in high carbon, high chromium die blanks with longitudinal grain flow, oil vs. air hardening. Specimen size: 300 x 150 x 20 mm.

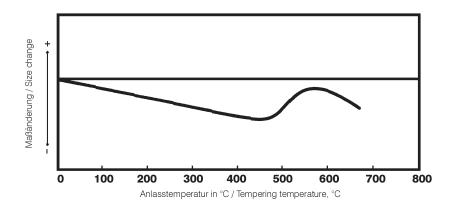
Maßänderung von Platten mit stehender Faser bei Öl- und Lufthärtung.


Size change in high carbon, high chromium die blanks with vertical grain flow, oil vs. air hardening.

Durch die Härtetemperatur ist es möglich, den Restaustenitanteil und damit die Volumenzunahme zu beeinflussen, ohne daß die Härte wesentlich sinkt.

Abhängigkeit der Härte, des Restaustenitgehalts und der Maßänderung in Längsund Querrichtung von der Härtetemperatur. Hardening temperature affords control of retained austenite, thus of increase in volume, with no appreciable loss of hardness.

Hardness, retained austenite, and size change lengthwise and crosswise as a function of hardening temperature.


Härtemittel: Öl Probenabmessung: Ø 20 x 100 mm (entnommen aus 20 mm dicken Flachstahl).

Quenchant: Oil Specimen size: Ø 20 x 100 mm (machined from 20 mm thick flats).

Beim Anlassen tritt im Vergleich zum gehärteten Zustand eine weitere Maßänderung auf.

Tempering from the as-quenched condition causes further size change.

Maßänderung beim Anlassen nach dem Härten Dimensional change during tempering after hardening

ZTU-Schaubild für kontinuierliche Abkühlung / Continuous cooling CCT curves

Austenitisierungstemperatur: 950°C

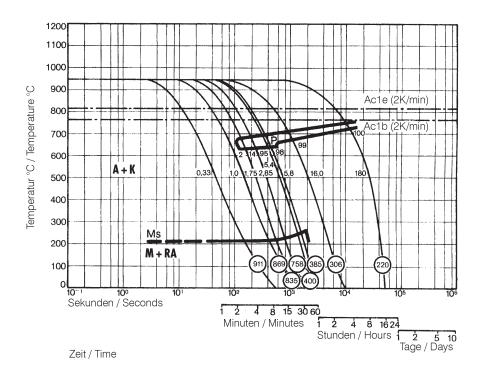
Haltedauer: 30 Minuten

Härte in HV

2 . . . 100 Gefügeanteile in %

0,33 . . . 180 Abkühlungsparameter, d. h. Abkühlungsdauer von 800°C bis 500°C in s x 10⁻² 2K/minAbkühlungsgeschwindigkeit in K/min im Bereich von 800°C bis 500°C

Austenitising temperature: 950°C Holding time: 30 minutes


Vickers hardness

2 . . . 100 phase percentages

 $0.33\ldots180$ cooling parameter, i.e. duration of cooling from 800°C to 500°C in s x 10^{-2} 2K/mincooling rate in K/min in the 800°C to

500°C range

Chemische Z	Zusammensetzur	ng (Anhaltswert	e in %) / Chemic	al composition	(average %)
С	Si	Mn	Cr	Ni	W
1,98	0,19	0,32	11,84	0,18	0,05

Gefügemengenschaubild / Quantitative phase diagram

 $\mathsf{Lk}\,\ldots\,\mathsf{Lede}$ buritkarbid / Ledeburite carbide

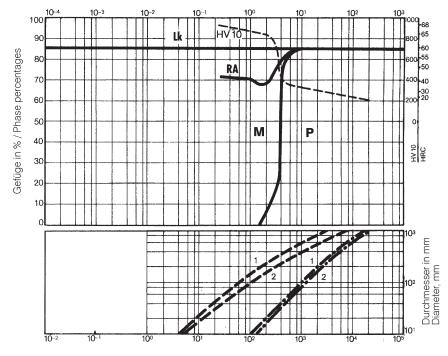
RA... Restaustenit / Residual austenite

A... Austenit / Austenite

 $\ensuremath{\mathsf{M}}$. . . Martensit / Martensite

P Perlit / Perlite

K Karbid / Carbide


--- Ölabkühlung / Oil cooling

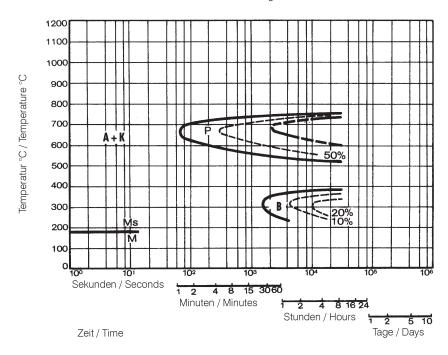
• • Luftabkühlung / Air cooling

1..... Werkstückrand / Edge or face

2..... Werkstückzentrum / Core

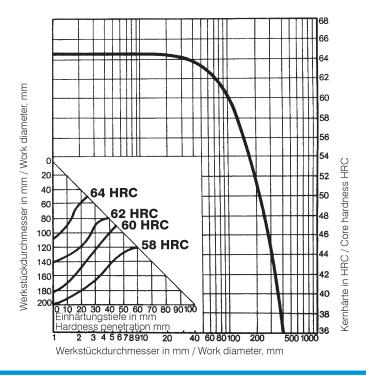
Abkühlungsparameter λ / Cooling parameter λ

Kühlzeit von 800°C auf 500°C in Sek. / Cooling time in sec. from 800°C to 500°C


Isothermisches ZTU-Schaubild / Isothermal TTT curves

Chemische 2	Zusammensetzur	ng (Anhaltswert	e in %) / Chemic	al composition	(average %)
С	Si	Mn	Cr	Ni	W
1,98	0,19	0,32	11,84	0,18	0,05

Austenitisierungstemperatur: 950°C


Haltedauer: 30 Minuten

Austenitising temperature: 950°C Holding time: 30 minutes

Abhängigkeit der Kernhärte und der Einhärtetiefe vom Werkstückdurchmesser

Influence of work diameter on core hardness and hardness penetration

Härtetemperatur: 950°C Härtemittel: Öl

Hardening temperature: 950°C

Quenchant: Oil

Bearbeitungshinweise

(Wärmebehandlungszustand weichgeglüht, Richtwerte)

Dearbeitungsiiniweise		,		Training agram, mamerica,
Drehen mit Hartmetall				
Schnittiefe mm	0,5 bis 1	1 bis 4	4 bis 8	über 8
Vorschub mm/U	0,1 bis 0,3	0,2 bis 0,4	0,3 bis 0,6	0,5 bis 1,5
BOEHLERIT- Hartmetallsorte	SB10,SB20	SB10, SB20, EB10	SB30, EB20	SB30, SB40
ISO - Sorte	P10,P20	P10, P20, M10	P30, M20	P30, P40
		Schnittgeschwi	ndigkeit, m/min	
Wendeschneidplatten Standzeit 15 min	210 bis 150	160 bis 110	110 bis 80	70 bis 45
Gelötete Hartmetallwerkzeuge Standzeit 30 min	150 bis 110	135 bis 85	90 bis 60	70 bis 35
Beschichtete Wendeschneidplatten Standzeit 15 min BOEHLERIT ROYAL 121 BOEHLERIT ROYAL 131	bis 210 bis 140	bis 180 bis 140	bis 130 bis 100	bis 80 bis 60
Schneidwinkel für gelötete Hartmetallwerkzeuge Spanwinkel Freiwinkel Neigungswinkel	6 bis 12 6 bis 8 0°	6 bis 12° 6 bis 8 - 4°	6 bis 12° 6 bis 8 - 4°	6 bis 12° 6 bis 8 - 4°

Drehen mit Schnellarbeitsstahl			
Schnittiefe mm	0,5	3	6
Vorschub mm/U	0,1	0,4	0,8
BÖHLER/DIN-Sorte		S700 / DIN S10-4-3-10	
		Schnittgeschwindigkeit, m/mir	1
Standzeit 60 min	30 bis 20	20 bis 15	18 bis 10
Spanwinkel Freiwinkel Neigungswinkel	14° 8° -4°	14° 8° -4°	14° 8° -4°

Fräsen mit Messerköpfen		
Vorschub mm/U	bis 0,2	0,2 bis 0,4
	Schnittgeschwi	indigkeit, m/min
BOEHLERIT SBF/ ISO P25	150 bis 100	110 bis 60
BOEHLERIT SB40/ ISO P40	100 bis 60	70 bis 40
BOEHLERIT ROYAL 131 / ISO P35	130 bis 85	130 bis 85

Bohren mit Hartmetall					
Bohrerdurchmesser mm	3 bis 8	8 bis 20	20 bis 40		
Vorschub mm/U	0,02 bis 0,05	0,05 bis 0,12	0,12 bis 0,18		
BOEHLERIT / ISO-Hartmetallsorte	HB10/K10	HB10/K10	HB10/K10		
	Schnittgeschwindigkeit, m/min				
	50 bis 35	50 bis 35	50 bis 35		
Spitzenwinkel	115 bis 120°	115 bis 120°	115 bis 120°		
Freiwinkel	5°	5°	5°		

Recommendation for machining

(Condition annealed, average values)

Turning with carbide tipped tools				
depth of cut mm	0.5 to 1	1 to 4	4 to 8	over 8
feed, mm/rev.	0.1 to 0.3	0.2 to 0.4	0.3 to 0.6	0.5 to 1.5
BOEHLERIT grade	SB10, SB20	SB10, SB20, EB10	SB30, EB20	SB30, SB40
ISO grade	P10, P20	P10, P20, M10	P30, M20	P30, P40
		cutting spe	eed, m/min	
indexable carbide inserts edge life 15 min	210 to 150	160 to 110	110 to 80	70 to 45
brazed carbide tipped tools edge life 30 min	150 to 110	135 to 85	90 to 60	70 to 35
hardfaced indexable carbide inserts edge life 15 min BOEHLERIT ROYAL 121 BOEHLERIT ROYAL 131	to 210 to 140	to 180 to 140	to 130 to 100	to 80 to 60
cutting angles for brazed carbide tipped tools rake angle clearance angle angle of inclination	6 to 12° 6 to 8° 0°	6 to 12° 6 to 8° - 4°	6 to 12° 6 to 8° - 4°	6 to 12° 6 to 8° - 4°

Turning with HSS tools			
depth of cut, mm	0.5	3	6
feed, mm/rev.	0.1	0.4	0.8
HSS-grade BOEHLER/DIN		S700 / DIN S10-4-3-10	
		cutting speed, m/min	
edge life 60 min	30 to 20	20 to 15	18 to 10

Milling with carbide tipped cutters				
feed, mm/tooth	to 0.2	0.2 to 0.4		
	cutting speed, m/min			
BOEHLERIT SBF/ ISO P25	150 to 100	110 to 60		
BOEHLERIT SB40/ ISO P40	100 to 60	70 to 40		
BOEHLERIT ROYAL 131 / ISO P35	130 to 85	130 to 85		

Drilling with carbide tipped tools					
drill diameter, mm	3 to 8	8 to 20	20 to 40		
feed, mm/rev.	0.02 to 0.05	0.05 to 0.12	0.12 to 0.18		
BOEHLERIT / ISO-grade	HB10/K10	HB10/K10	HB10/K10		
cutting speed, m/min					
	50 to 35	50 to 35	50 to 35		
top angle	115 to 120°	115 to 120°	115 to 120°		
clearance angle	5°	5°	5°		

Physikalische Eigenschaften

Physical properties

Dichte bei / Density at	20°C	.7,70	.kg/dm ³
Wärmeleitfähigkeit bei / Thermal conductivity at	20°C	.20,0	.W/(m.K)
Spezifische Wärme bei / Specific heat at	20°C	.460	.J/(kg.K)
Spez. elektr. Widerstand bei / Electrical resistivity at	20°C	.0,65	.Ohm.mm ² /m
Elastizitätsmodul bei / Modulus of elasticity at	20°C	.210 x 10 ³	.N/mm ²

Wärmeausdehnung zwischen 20°C und°C, 10 ⁻⁶ m/(m.K) bei Thermal expansion between 20°C and°C, 10 ⁻⁶ m/(m.K) at					
100°C	200°C	300°C	400°C	500°C	600°C
10,5	11,0	11,0	11,5	12,0	12,0

Für Anwendungen und Verarbeitungsschritte, die in der Produktbeschreibung nicht ausdrücklich erwähnt sind, ist in jedem Einzelfall Rücksprache zu halten.

As regards applications and processing steps that are not expressly mentioned in this product description/data sheet, the customer shall in each individual case be required to consult us.

Überreicht durch:
Your partner:

BÖHLER EDELSTAHL GMBH & Co KG MARIAZELLER STRASSE 25 POSTFACH 96 A-8605 KAPFENBERG/AUSTRIA TELEFON: (+43) 3862/20-6046 Marketing TELEFAX: (+43) 3862/20-6260 Technical Department

E-mail: info@bohler-edelstahl.com www.bohler-edelstahl.com

Die Angaben in diesem Prospekt sind unverbindlich und gelten als nicht zugesagt; sie dienen vielmehr nur der allgemeinen Information. Diese Angaben sind nur dann verbindlich, wenn sie in einem mit uns abgeschlossenen Vertrag ausdrücklich zur Bedingung gemacht werden. Bei der Herstellung unserer Produkte werden keine gesundheits- oder ozonschädigenden Substanzen verwendet.

The data contained in this brochure is merely for general information and therefore shall not be binding on the company. We may be bound only through a contract explicitly stipulating such data as binding. The manufacture of our products does not involve the use of substances detrimental to health or to the ozone layer.